河豚中毒及其防治 (综述)

王健伟 罗雪云 计融 卫生部食品卫生监督检验所 (100021)

河豚中毒是一种因食用有毒河豚而导 致的食物中毒、引起中毒的物质主要是河 豚毒素 (tetrodotoxin, TTX)。另外 还有脱水河豚毒素、脱氧河豚毒素、河豚 酸等多种河豚毒素衍生物,但这些物质的 毒性远低于 TTX, 且其在河豚中的含量也 很低, 因此不是引起中毒的主要物 质。^{〔1〕}TTX 毒性极强、曾一度被认为是 毒性最强的非蛋白类毒素。〔2〕河豚肉味 腴美、营养丰富、亚洲一些国家(如日 本、中国等) 自古以来便有食用河豚的习 惯,因此河豚中毒屡有发生。据报道,日 本每年河豚中毒死亡人数占同期食物中毒 死亡人数的 70% 以上、^{〔3〕} 60% 以上的 河豚中毒者死亡、〔4〕为此河豚中毒被当 作一种公害受到人们普遍重视。〔5〕我国 的河豚中毒情况也相当严重。本文仅就近 年来河豚中毒的流行情况和预防、治疗措 施的研究作一简要综述。

1 河豚中毒的流行病学

人类河豚中毒历史上早就有记载、公元前 2000 多年我国的《神农本草》就记载了河豚毒素的毒性。^[1]河豚中毒在全世界的分布很广、^[1,6]以日本、中国等国家为主。因 TTX 毒性极强且中毒后缺乏有效解救措施、因此由于食用有毒河豚而导致的食物中毒严重威胁着人们的生命。

表 1 和表 2 分别列出了近年来日本与我国 河豚中毒与死亡的发生情况。从表中可以 看出, 每年河豚中毒的起数和中毒人数在 总的食物中毒中所占比例极小、但死亡人 数所占比例却很大。尤其在日本、河豚中 毒死亡人数在食物中毒总死亡人数中可占 50%以上、是食物中毒死亡的主要原因。 我国虽不及日本, 但在食物中毒死因中河 豚中毒仍占相当的比例。近年来虽然我国 食物中毒发生的起数和中毒人数呈逐年下 降趋势, 但河豚中毒的发生起数和中毒人 数却并无减少。由于河豚中毒尚无有效治 疗措施, 因此其病死率较高。我国每年病 死率在 20% 以上、为历年各种食物中毒中 最高者(1989年例外)、「8〕并远远高 于同年食物中毒总病死率、居高不下。日 本也有类似情况^{〔7〕}1972~1984年平 均病死率为 28.4%, [10] 近年来有下降 趋势。〔6〕

由于我国幅员辽阔、而河豚中毒主要限于沿海地区、故全国食物中毒统计不足以全面反映河豚中毒的危害。从沿海地区的情况看(表3),河豚中毒在这些地区食物中毒中所占的比例高于全国、且在食物中毒死亡构成中所占的比例接近于日本、成为这些地区食物中毒的主要死因。〔11,12,14,15〕

表 1 1981~1991年日本河豚中毒的发生情况 (20)

年份	中毒起数	构成%	中毒人数	构成%	死亡人数	构成%	病死率%
1981	30 (692)	4.3	46 (17988)	0.3	12(13)	92.3	26.0
1982	26 (571)	4.6	33 (24656)	0.1	3(10)	80.0	24.2
1983	18(713)	2.5	34 (25393)	0.1	6 (12)	50.0	17.6
1984	23 (705)	3.3	39 (22171)	0.2	6(19)	31.6	15.4
1985	30 (754)	4.0	41 (22442)	0.2	9(10)	90.0	22.0
1986	22 (583)	3.8	38 (24433)	0.2	6(7)	85.7	15.8
1987	35 (565)	6.2	52 (17377)	0.3	4(5)	80.0	7.7
1988	26 (476)	5.5	46 (28191)	0.2	5(8)	62.5	10.9
1989	31 (572)	5.4	45 (24179)	0.2	5(10)	50.0	11.1
1990	32 (589)	5.4	52 (25923)	0.2	1(5)	20.0	1.9
1991	29 (559)	5.2	45 (30158)	0.1	3(6)	50.0	6.7

注: 表中括号内的数字为当年各项食物中毒的总数、指引起中毒的食品已查明。

表 2 1985 ~ 1992 年我国河豚中毒的发生情况 ^[21, 22]

年份	中毒起数	构成%	中毒人数	构成%	死亡人数	构成%	病死率
1985	43 (3471)	1.24	178 (76213)	0.23	42 (620)	6.77	23.60(0.81)
1986	39 (3320)	1.17	284 (88569)	0.32	30 (495)	6.06	10.56(0.56)
1987	33 (3241)	1.02	97 (89827)	0.11	28 (501)	5.58	28.87 (0.56)
1988	20 (2228)	0.90	69 (55420)	0.12	23 (442)	5. 20	33.50(0.80)
1989	23 (2117)	1.10	201 (57453)	0.30	17 (482)	3.52	8.50(0.80)
1990	33 (2029)	1.60	193 (52277)	0.40	42 (373)	11. 26	21.80(0.70)
1991 ⁽¹⁾	23 (1524)	1.50	105 (34857)	0.30	24 (345)	6.95	22. 85 (0. 98)
1992	30 (1405)	2. 13	188 (39085)	0.48	39 (332)	11.74	20.74(0.84)

注: 表中括号内的数字为当年相应各项的总数 (或总病死率)-

(1)1991 年仅包括前3个季度的数字

表 3 我国沿海部分地区河豚中毒的发生情况

地 区	年份	中毒起数	构成%	中毒人数	构成%	死亡人数	构成%	病死率	文献
青岛市	1956 ~ 1988	36(791)	4.55	133 (28630)	0.46	30 (120)	25.00	22.55	24
广州市	1976 ~ 1985	13 (435)	2.99	42(7108)	0.59	7(24)	29.16	17.07	25
福州地区	1986 ~ 1988	6(81)	7.40	10(1471)	0.67	2(4)	50.00	20.00	26
浙江省	1990	8 (121)	6.61	19 (2600)	0.73	8(15)	53. 33	42.10	27
广东省	1991			_	_	11(18)	61.11	_	28

注: 表中括号内的数字为该地区食物中毒相应项目的总数

河豚中毒具有一般食物中毒的特点。 在地区分布上、主要集中于出产该种鱼的

河豚中毒的发生以散发为主。日本 1972~1984年共发生河豚中毒 506 起、中毒人数为 838 人、平均每起 1.65 人。^{〔10〕}我国平均每起中毒人数要多于 日本(表 2)。除了散发、也不乏暴发的 例子。王德首^{〔18〕}曾报道过一起因食用 有毒河豚内脏造成 3 户 19 人中毒、其中 9 人死亡的暴发事件。

我国台湾地区河豚中毒的流行情况未见公开报道。 Hwang 等^[19] 1989 年报道了一起祖孙 2 人因食用河豚卵而中毒的事件、经薄层色谱、电泳和高效液相色谱分析证实为 TTX 中毒。

2 河豚中毒的预防与治疗

由于河豚中毒严重危害消费者的生命安全、一些国家的政府制订了严格的管理措施。日本政府规定了双重许可证制度、只准持证的餐馆和厨师加工、出售河豚鱼; ⁽⁵⁾并要求对市场上销售的河豚的毒力进行检查、对准予食用的河豚的种类和部位也做了明确规定。 ^(6,10) 我国"水产品卫生管理办法"则规定: "河豚鱼有剧毒、不得流入市场、应剔出集中妥善处

理、因特殊情况需进行加工食用的应在有条件的地方集中加工、在加工处理前必须 先去除内脏、皮、头等含毒部位、洗净血 污、经盐腌晒干后安全无毒方可出售、其 加工废弃物应妥善销毁。"这些措施的执 行在一定程度上减少了河豚中毒的发生、 但由于人们私自食用或误食而导致的中毒 仍时有发生。所以国内外学者对河豚中毒 的预防和治疗措施进行了大量研究。

2.1 传统烹调方法及各种加工手段的去 毒作用

小泽千重子研究了日本石川县民间用 米糠腌泡河豚鱼籽的去毒效果、〔20,21〕 发现鱼籽酸败时、其毒力明显减低、且腌 制溶液中 NaCl 浓度与河豚鱼籽致小鼠死 亡时间呈正相关关系。〔20〕其后又研究 了盐腌河豚鱼籽时添加各种碱性物质的去 毒效果,以 NaHCO_x效果最佳。^{〔21〕} 決 祐一、局伸男等〔22~24〕报道了日本大 分县传统烹调方法对有毒河豚的去毒效果 (作者对烹调方法未作具体介绍)。按传 统方法烹饪后、河豚肝脏的毒力可降至 5MU (小鼠单位)以下。〔23〕烹饪前的揉洗 过程可以除掉部分 TTX, 在随后的 100 ℃ 加热过程中, 绝大部分毒素可以被破坏, 加热 6h, 毒力可降至原来的 4%。经过擦 洗和 5 次加热、毒力可减至原来的 0.5% 以下。〔22〕比较不同加热方法的去毒效 果、以中性溶液提取毒素后直接煮沸效果

我国学者何家璋^{〔25〕}以北部湾海区 盛产的大眼兔豚等为材料、详细研究了各种烹调加工方法的去毒效果(表 4)。这 些方法中以制肉松效果最好、其它方法只 能不同程度地部分去毒、需综合利用才能 达到彻底去毒的目的。在此基础上、冯先 荣 等 用 大 鼠 喂 养 实 验 研 究 了 经 Na₂CO₃⁽²⁶⁾ 和热处理⁽²⁷⁾ 去毒后河豚 鱼粉的营养效用。发现处理后的河豚鱼粉 与羊鱼粉(对照组)的营养效用无显著性 差异、即营养价值没有减低。

对于各种加工方法的去毒机理、目前研究的很少。 決划 祐 一等^{〔22〕}认为、有毒河豚肝脏加热去毒的机理是在加热过程中发生了 TTX(剧毒) →脱水 TTX(弱毒) →河豚酸 (无毒)的转化。

我国各种传统加工烹调

表 4 方法对河豚的去毒效果 ^{〔25〕}	%					
处 理 方 法	去毒率					
1. 烹调前的加工方法						
食盐搓洗 2 次	13					
3% 盐水煮沸 2 min	22					
*60℃水溶脱2次	22					
盐腌	33					
60℃ 2% NaHCO3溶脱 2次	40					
60 ℃ AcOH 溶脱 2 次	58					
10℃ Be 盐水 2% Na ₂ CO ₃						
浸渍 24 h	80 ~ 90					
2. 烹调方法						
清蒸 30 min	72					
清蒸 60 min	82					
红烧 (2h)	近 100					
鱼汤 (煮沸 1 h)	近 100					
3. 制肉松						
鲜河豚	87.7					
咸河豚	近 100					

2.2 TTX 解毒药物的研究

多年来、TTX 中毒一直没有特效解毒药物、临床的治疗方法主要是用碳酸氢钠洗胃及对症治疗。 [28~30]《本草纲目》记载:"(河豚中毒)橄榄、木鱼茗、芦根、乌茵草根可解"。但对中草药解毒作用的研究一直未见报道。张永贵等 [31] 通过体外和体内实验对 TTX 的可能解毒药物新斯的明、东莨菪碱、654-2

和 ATP 进行了研究。结果表明、新斯的明和东莨菪碱都能不同程度地拮抗 TTX 抑制横纹肌的作用、并认为解毒机理可能与新斯的明拮抗竞争性肌松药筒箭毒碱相似、而东莨菪碱可能与调节细胞内 cAMP/cGMP 比值有关。这一研究为河豚中毒的解救及寻找 TTX 解毒药提供了依据。

2.3 免疫治疗与预防的实验研究

80 年代末以来、国外学者不仅将抗 TTX 的抗血清和单克隆抗体 (McAb) 用干 TTX 的检测、而且还在将抗血清和 McAb 用于 TTX 中毒的预防及治疗方面进行了有 益的探索、从而为 TTX 中毒的防治开辟了 一条新的途径。^{〔32~35〕}1989年 Watabe 等^{〔32〕}报道抗 TTX McAb 在小 鼠体内对 TTX 毒力无中和作用。但几乎与 此同时、Huot等人^{〔33〕}却报道了截然 相反的结果。在离体大鼠脑 TTX 置换试验 中、McAb 可以特异性地阻止 TTX 与其受 体的结合;在原位保护实验中、 McAb 能 拮抗 TTX 中毒所致的大鼠胫神经动作电位 的下降。其后,其他研究者也证实了 McAb 的保护作用。 Kaufman 等〔34〕分别制 备了抗 TTX 的抗血清和 McAb, 发现兔抗 血清可中和 TTX 与石房蛤毒素的毒力, McAb 则仅对 TTX 有中和作用。对离体培 养的 Neuro 2A 细胞、抗血清可使 TTX 导 致的细胞死亡数目减少 60%。给小鼠分别 注射用抗血清或 McAb 处理过的 TTX 和用 普通兔血清处理过的 TTX (2 组 TTX 均达 致死剂量),前者生存率明显高于后者。 最近、Fukiya与Matsumura ^{〔35〕}研 究了 BALB/c 小鼠对 TTX 的主动与被动免 疫。先将 TTX 与 KLH(匙孔虫或血蓝蛋白) 结合、用该结合物 5 次免疫后、给小鼠腹 腔注射致死剂量的 TTX, 小鼠无一死亡, 而用 KLH 免疫者则全部死亡。给未经免疫

的小鼠注射 1.5MU TTX, 然后间隔不同时间注射抗 TTX IgG, 发现小鼠在中毒后 3min, IgG 保护效果最佳、而 9min 后则 失去保护作用。因此、在中毒早期被动免疫是有效的。人类中毒的神经症状在中毒后 2~3h 出现、在 7~8h 内发生死亡、故作者认为有足够时间来进行免疫治疗。当然免疫疗法在人类的应用尚需进一步研究。

另外、日本学者还报道了某些动物体 内成分的抗 TTX作用。 Yamamori、 Shiomi 等预先给小鼠注射对 TTX 有较高 耐受性的无毒海蟹 (Hemigrapsus Sangunineus)的液体、然后分别注射不同 剂量的 TTX. 发现体液中分子量大于 10 \times 10³的部分可将 TTX 的毒力降至 1 MU 以下。〔36〕此后、他们进一步研究了此 种体液成分的抗毒作用。中和试验表明, 若该种体液与 TTX 同时给小鼠注射, lmL 体液可中和 3.6~ 4.0 MU TTX; 若 在给小鼠腹腔注射 TTX 之前或之后、静 脉注射这种体液、则其中和能力可提高至 7.2~ 12.5MU TTX/mL 体液。·研究表 明该物质可与 TTX 特异性结合、但其结 构和性质目前尚不清楚。^{〔37〕}

3 参考文献

- 1 Kao, CY. Tetrodo toxin, Saxitoxin and their Significance in the Stuclh of Excitatiai Phenomena. Pharmacol Rev, 1966, 18:997 ~ 1104
- 2 刘志诚、于守洋主编,营养与食品卫生学,第2版,北京:人民卫生出版社 292~293
- 3 川田十三夫、保野景典编著(齐素瑛、冯鹤田译).最新食品卫生学.北京:轻工业出版社 1988,66~69
- 4 May, AS. Toxic Con Stituent of Fish and Sheclfcsh. Chem & IND (london), 1982, (24): 982 ~ 984

- 陈葉胜、潘心富、天然毒素研究的展望、见:陈远聪。袁士龙编、中国生物化学会专题讨论会文集
 (4):毒素的研究和利用、北京:科学出版社 1988,1~16
- 6 道野英司. 关于确保河豚卫生安全的对策(禁止 出售梨形河豚). 食品卫生研究(日本) 1993, 43:15~22
- 7 厚生省生活卫生局保健课、食品卫生研究 1982, 32: 81 ~ 105; 1983, 33: 53 ~ 77; 1984, 34: 53 ~ 80; 1985, 35: 47 ~ 74; 1986, 36: 61 ~ 88; 1987, 37: 49 ~ 76; 1988, 38: 57 ~ 84; 1989, 39: 61 ~ 88; 1990, 40: 89 ~ 116; 1991, 41: 61 ~ 88; 1992, 42: 77 ~ 104
- 8 卫生部食品卫生监督检验所.全国食物中毒统计年报(1985,1986,1987,1988,1989,1990)
- 9 卫生部食品卫生监督检验所.全国食物中毒统计分析报告. 1991,1~3季度
- 10 山中英明. 鱼贝类毒天然毒素食物中毒的现状. 食品卫生学杂志(日本)1986,27:343~353
- 11 韩邦平. 青岛市 33 年食物中毒浅析. 青岛市卫 生防疫 1989, (10):84 ~ 90
- 12 丁佩珠. 广州市 1976 ~ 1985 年食物中毒情况 分析. 广东卫生防疫. 1988, (4):75 ~ 79
- 13 陈诗潜 1986 ~ 1988 年福州地区食物中毒情况 分析、福建卫生防疫、 1989, (9):156 ~ 158
- 14 高芳荣、俞平、浙江省 1990 年食物中毒情况分析,浙江卫生防疫资料汇编、 1990,(8):17
- 15 邱建峰. 1991 年广东省食物中事情况分析. 广东卫生防疫、1992,18:69 ~ 71
- 16 卫生部卫生监督司,中华人民共和国卫生部关于 1990年卫生监督工作情况的通报,卫生监督信息 (副刊) 1991,(8):17
- 17 中华人民共和国卫生部关于 1992 年卫生监督工作 情况的通报 11 ~ 12
- 18 王德首,河豚鱼内脏引起食物中毒暴发,中华预防医学杂志,1984,18:210~212
- 19 Hwang, DF, et al. First Identification of Acute Tetrodotoxin-associatd Food Poisoning in Taiwan. J Formosan Md Assoc. 1989, 88:289 ~ 291
- 20 小泽千重子. 盐渍河豚卵巢毒性. 食品卫生学杂志(日本), 1983, 24: 258~262
- 21 小泽千重子、添加碱盐渍河豚卵巢的毒性和影

响,食品卫生学杂志 (日本), 1983,24:263~267

- 22 **渕 祐一、等、传统烹调河豚肝脏的减毒机制**、食品卫生学杂志(日本)、1988、29:320~324
- 23 局伸男、等,有毒河豚肝脏的烹调去毒效果,食品卫生学杂志(日本),1986,27:561~564
- 24 渕 祐一、等,加热对河豚霉素的影响,食品卫生 学杂志(日本),1986,27:573~577
- 25 何家璋.安全食用河豚方法的探讨: Ⅱ.河豚鱼 去毒方法研究.食品科学 1986,(4):33 ~ 35
- 26 冯先荣、等.安全食用河豚方法的探讨: Ⅲ.经 碳酸钠去毒后的河豚鱼粉营养价值.食品科学、 1986,(5):24 ~ 26
- 27 冯先荣、等、安全食用河豚方法的探讨: IV.热处理去毒后河豚鱼粉的营养效用。 食品科学、1986,(6):16~18
- 28 王维国、徐晓峰,河豚鱼中毒的临床探讨,中国 海洋药物, 1990,9:36~38
- 29 福州市卫生防疫站. 六起 22 例河豚中毒调查报告. 卫生防疫资料汇编, 1976, 9:68 ~ 70
- 30 陈惠娟,抢救河豚鱼中毒 25 例报道,华山冶金医,专学报,1985,2:30~35
- 31 张永贵、等,河豚毒素 (TTX)解毒药研究,教学与医疗,1985,1:12~15
- 32 Watabe, S, et al. Monoclonal Antibodies
 Raised Against Tetrodonic Acid, a

- Dervative of Tetrodotoxin. Toxicon, 1989, 27:256 ~ 268
- 33 Hout, RI, et al. Protection Against
 Nerv Toxicity by Monoclonal Antibodys
 to the Sodium Channel Blocker
 Tetrodotoxin. J Clin Invest, 1989,83:
 1821 ~ 1826
- 34 Kaufman, B, et al. Protection Against Tetrodotoxin and Saxitoxin Intoxication by a Cross-protective Rabbit Antitetrodotoxin Antiserum. Toxicon, 1991, 29:581 ~ 587
- 35 Fukiya, S, Matsumura, K. Active and Passive Immunization for Tetrodotoxin in Mice. Toxicon, 1992, 30: 1631 ~ 1634
- 36 Yamamori, K, et al. Tolerance of Shore Crabbs to Tetrodotoxin and Saxitoxin and Antagonistic Effect of their Body Fluid Against the Toxins. Bull Japan Soc Sci Fish, 1992, 58: 1157 ~ 1162
- 37 Shiomi, K, et al. Occurence of Tetrodotoxin-binding High Molecular Weight Substances in the Body Fluid of Shore Crab (Hemigrapsus Sanguineus).

 Toxicon, 1992, 30:1529 ~ 1537

《中国食品卫生杂志》各类文章格式

一、论著的格式

摘要

前言

- 1. 材料与方法 (包括原理)
- 2. 结果
- 3. 讨论
- 二、实验技术与方法的格式
- 1. 前言
- 2. 材料与方法(包括标准曲线的制作方法)
- 3 结果(包括标准曲线图、精密度、准确度、回收率等)
- 4. 讨论

三、调查报告的格式

- 1. 调查对象、范围、时间、内容
- 2. 材料与方法
- 3. 结果 (质控文章的结果在 3.1, 如室内、室间控制)
- 4. 讨论

四、食物中毒报告的格式

前言

- 1. 流行病学调查 (人群分布)
- 2 临床表现 (潜伏期、临床症状转归)
- 3. 原因分析 (包括实验室检验等)
- 讨论(根据以上资料、结论、就相关问题讨论)