调试适当,实效较好。测汞仪为上海产、经改进的 F_{732} ,结果证明是好的。在世界 AQA 中,测报 Hg 的实验室最少,近二次的 AQA 中只有 56% 和 59% 的实验室报了结果,这可能与 Hg 的消解和仪器独特有关。因为原子吸收、ICP 都不能测汞,因此我们改进的压力消解— F_{732} 测汞仪是值得推广的。

2.3 关于极低含量的报告与评判 在 AQA_{\parallel} 的 8 个 液样中有个酸空白,其定值是"0", AQA_{\parallel} 的 35 号试

结果影响很大。前几年我国部分省市联检奶粉,其定值为 0.034~mg/kg,仍要计算其 2 或 3 倍标准偏差来判合格与否,这就很难反应实际水平。对此应借鉴国际多数实验室的"<"和 $AQA_{\mathbb{N}}$ 对试剂空白用"0"的形式,以及对正常奶粉中 Pb、Cd 0.10~mg/kg, Hg 0.03~mg/kg 的不作 \pm % 评判,或像 $AQA_{\mathbb{N}}$ 不再发极低含量的正常奶粉作考核。

注: UNEP一联合国环境规划署

表 8 株菌的生化反应结果

	生化反应阳性	生化反应阴性
甘露醇	蕈糖 卫矛醇 山梨醇 阿拉伯糖 木糖	蔗糖 棉子糖 水杨素 肌醇 乳糖
鼠李糖	麦芽糖 硫化氢 枸橼酸盐 葡萄糖胺盐	尿素 吲哚 丙二酸盐 苯丙氨酸 明胶 ONPG
赖氨酸	鸟氨酸 精氨酸 硝酸盐 MR	DNA 酶

药敏试验 8 株菌对艮他霉素、羧苄青霉素、丁胺卡那霉素、环丙沙星、氟哌酸、新诺明、氧氟沙星敏感;对头孢噻吩,氨苄青霉素、多粘菌素 B 中度敏感;对利福平、万古霉素、强力霉素、螺旋霉素耐药。

质粒测定

试验株为 8 株食物中毒分离菌(编号 $31\sim38$),对照菌株为大肠艾希氏菌 $L_{5\sim30}$ (含质粒 RP_4),由中国科学院微生物研究所提供。

参考徐建国方法,^[3]80 MVT 0.75% 琼脂糖电泳,紫外线下观察结果,摄影记录(照片略)。

8 株菌仅显示一个质粒图谱型,均携带两条质粒带,大小分别为 66.07 和 28.19 Md。[4]

本次食物中毒的流行病学调查、临床表现以及菌株的生物学特征、血清学测定、质粒的测定,的结果说明这三起食物中毒是由肠炎沙门氏菌引起的。肠炎沙门氏菌的生物学鉴定,一般不难掌握,但其血清学

定型有一定难度。因为该菌只存在第 I 相鞭毛抗原,要否定不存在的第 II 相鞭毛抗原,需要长时间做鞭毛诱导试验,这必然影响腹泻和食物中毒病原菌诊断报告要及时、准确的要求。为此,我们同时对 8 株菌进行了细菌质粒图谱测定,结果 8 株菌均出现一个质粒图谱型,两条分子量不同的质粒带。进一步确定了三起食物中毒均为肠炎沙门氏菌所致。

(本文承蒙哈尔滨市卫生防疫站徐迪诚主任医师指导,特此感谢)

5 参考文献

- 1 Kring N R, et al. Bergey's manual of systematic Bacteriolog 1984, 1:409~515
- 2 徐迪诚,等,革兰氏阴性杆菌新编码鉴定手册,哈尔滨: 黑龙江科技出版社,14~508
- 3 徐建国,等.微生物学通报.1991,18(1):44~67
- 4 陈小英,等.南京药学院学报.1985,16(2):53~58

参加 UNEP/FAO/WHO 食物污染监测的体会

顾伟勤 上海市食品卫生监督检验所 (200335)

1985 年我所受中国预防医学科学院营卫所(是中国的 UNEP/FAO/WHO 监测合作中心)推荐,参加AQA_{IV}(第 4 次分析质量保证)研究(我国参加此项工作的还有营卫所、卫生部食检所、江苏和广东省卫生防疫站)。AQA 是对各国合作中心监测水平的考核,目的是提高全球食品污染监测数据的可靠性和可比性。是对每个参加者日常质量管理和监测水平的检验。AQA 二年一次,由于各国每次最多 5 个实验室参加,故在连续 3 次后,我所未参加 1992 年的第 7 次(AQA_{IV})。1994 年第 8 次该工作由部食检所接管,特邀我们参加。通过 AQA 既可对照自己也可了解各国食品污染监测水平。为便于今后其他实验室参与世界 AQA 和在国内开展 AQA,特将我所参加的 4 次AQA 情况介绍如下。

1 情况介绍

- 1.1 期限 从收到试样到截止报告约 2.5 个月。截止后 3~6 个月可收到其汇总小结,若有幸(指全部项目测定均达优秀)则在半年后可收到包括黄曲霉毒素和农残的全面总结文本。
- 1.2 试样数量与品种 我所参加的 4 次 AQA 均不相同。 AQA_{IV} 为 4 件干样(是合成纤维素加食物中主要元素和不同含量的 Pb、Cd、Hg 及 8 件标准溶液,包括试剂空白及不同浓度的 Hg 含量。

 AQA_V 为 4 件干样,与上次不同的是 Pb、Cd、Hg 只分 2 种浓度,而每种浓度中又各加一种干扰物质。

 AQA_{\square} 为 2 件脱脂奶粉,每件试样重量同以前一样都在 15 g 以下,一件为正常奶粉,一件为在正常奶粉中加入 Pb、Cd、Hg。

标准即定值的 \pm 20%。后在总结中放宽至 \pm 40%,并将 \pm 40%以外的实验室和数值分别在各项中列出(似开红灯)。但对正常奶粉 Pb、Cd 各 0.10 mg/kg、Hg 0.03 mg/kg 的微量则不用 \pm % 来评判,只对过高者分开排列以示离群。AQA_{III}改为按国际新的 Z-score 计算,以 \pm 2 为界(推算相当于定值 \pm 30%以上)。

2 体会与建议

2.1 我国的国标检验方法必须尽快补充和更新,现 有的方法已影响日常检测,更不适应国际交流。以 AQA_{VI} 例,12~15 g 试样要求测水份和 3 个元素,再 重复一次,每次平行。而我国现国标方法测定这3个 元素的方法是各不相同的,前处理也全不一样。Pb 和 Cd 虽都干法灰化,但温度差异大,且 Cd 还得用有 机物萃取。而 Hg 更因其易氧化的特性只能用酸消 解一冷凝水回流法。这样用最低取样量 1.0 g, 2 次 平行就 12 g。而水份每次测定试样不能少于 3.0 g, 所以无论如何达不到要求。作者参加 AQA 后认为, 应有一个测这 3 个元素共用的前处理方法。1988 年 我们引进压力消解罐,在应用测常量元素的基础上试 验测 Hg、Cd、Pb 和 Cr,结果满意。用于 1990 年第 6 次分析质量保证(AQA_{VI})的试样检测,取得完全成 功。Hg 与 Cd 2 次测定都为优(±20%), Pb 测定一 次为优、一次为合格(±40%)。而按其要求,选一个 最正确含量,则为优的值。在后赠寄的总结中,AQA 负责人特附函致贺,这次有中、美、英、苏、瑞典等21 个国家 51 个实验室参加(多为国家级),如中国预防 医科院营卫所、美国 FDA、苏联药物研究所、英国食

方法与仪器不规定,按各自常规分析方法,最后注明。

1.4 评判 AQA_{IV} 和 AQA_{V} 不评判。只告诉定值及每个实验室(编号)测报值,自己比较。 AQA_{V} 有评判