实验技术与方法

分散固相萃取-液相色谱-串联质谱法测定植源性油料油脂中 67种除草剂

刘迪1,2,3,韩莉1,2,3,余婷婷1,2,3,张莉1,2,3,李珉1,2,3,江丰1,2,3,王会霞1,2,3

(1. 湖北省食品质量安全监督检验研究院,湖北武汉 430075;2. 国家市场监管重点实验室动物源性食品中重点化学危害物检测技术,湖北武汉 430075;3. 湖北省食品质量安全检测工程技术研究中心,湖北武汉 430075)

摘 要:目的 建立分散固相萃取结合液相色谱-串联质谱同时测定油料油脂中67种除草剂残留的检测方法。 方法 选取花生、大豆、油菜籽、花生油、大豆油及菜籽油为典型基质试样,经1%甲酸-乙腈提取,通过乙二胺基-N-丙基和无水 MgSO4分散固相萃取净化。以甲醇和5 mmol/L 乙酸铵(含0.1%甲酸)为流动相梯度洗脱,采用 C₁₈色谱 柱分离,ESI离子源正负离子模式同时进行多反应监测(MRM),基质标准曲线外标法定量。结果 基质加标试验结 果表明,0.0005~0.08 mg/L 浓度范围内67种除草剂线性良好,决定系数(R²)均>0.992,定量限(LOD)为0.005~ 0.02 mg/kg。3 个加标水平下(LOD、2LOD、10LOD)的回收率为62.3%~118.1%,RSD(n=6)均<15%。结论 本方法 稳定性高、特异性强、灵敏、准确、高效,可以用于油料油脂中多种除草剂残留的定性定量检测。

关键词:液相色谱-串联质谱;除草剂;油料;油脂;分散固相萃取

中图分类号:R155 文献标识码:A 文章编号:1004-8456(2022)04-0715-09 **DOI:**10.13590/j.cjfh.2022.04.013

Determination of 67 herbicides in vegetable oil and fat by liquid chromatography tandem mass spectrometry coupled with dispersive solid phase extraction

LIU Di^{1,2,3}, HAN Li^{1,2,3}, YU Tingting^{1,2,3}, ZHANG Li^{1,2,3}, LI Min^{1,2,3}, JIANG Feng^{1,2,3}, WANG Huixia^{1,2,3} (1. Hubei Provincial Institute for Food Supervision and Test, Hubei Wuhan 430075, China;

2. Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Hubei Wuhan 430075, China; 3. Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Hubei Wuhan 430075, China)

Abstract: Objective A high-throughput method for simultaneous determination of 67 herbicide residues in oilseeds and oils by liquid chromatography-tandem mass spectrometry combined with dispersive solid phase extraction was established. **Methods** Peanut, soybean, rapeseed and their oil were extracted with 1% formic acid-acetonitrile, and then purified by ethylenediamine-N-propyl and anhydrous $MgSO_4$ dispersed solid phase extraction. Methanol and 5 mmol/L ammonium acetate (containing 0. 1% formic acid) were used as mobile phases for gradient elution. C_{18} column was used for separation, positive and negative ion mode of ESI ion source was used for simultaneous multi-reaction monitoring (MRM). And matrix standard curve external standard method was used for quantification. **Results** Under different substrates, the linear range of 67 herbicides was from 0. 000 5 to 0. 08 mg/L, the correlation coefficients (R^2) were all above 0. 992, and the limits of detection (LODs) were 0. 005~0. 02 mg/kg. The recoveries of three spiked levels (LOD, 2LOD and 10LOD) were between 62. 3% and 118. 1% with RSD (n=6) less than 15%. **Conclusion** This method is stable, specific, sensitive and accurate, and can be used for qualitative and quantitative detection of herbicides in oilseeds and oils.

Key words: Liquid chromatography tandem mass spectrometry; herbicide; oilseed; oil; dispersive solid phase extraction

收稿日期:2021-12-24

我国油料作物登记使用的除草剂类别繁多,常 用的包括苯氧羧酸类、吡唑类、吡啶类、磺酰脲类、咪 唑啉酮类、芳氧苯氧丙酸酯类、三嗪类、酰胺类、二硝 基苯胺类、环己烯酮类、脲类、二苯醚类、有机磷类 等^[1-2]。除草剂可有效防除一年生禾本科杂草、阔叶

基金项目:国家重点研发计划项目(2018YFC1602302);湖北省重点研 发计划项目(2020BCA091)

作者简介:刘迪 男 工程师 研究方向为食品质量安全与检测 E-mail: 448301588@qq.com

杂草、某些多年生恶性杂草及清除池塘中的水草和 有害藻类,但随着使用量及使用范围的扩大,其在作 物中的残留及污染,以及对人类健康和环境造成的 毒害也受到公众广泛关注[3-7]。诸多研究表明,除草 剂对多种水生生物和人类都具有毒副作用[8-10],大量 使用除草剂会残留在动植物体内,通过食物链传递 于人并在体内累积,从而产生慢性危害^[11]。据统计, 在我国,大豆田施药主要是除草剂,占登记农药总量 90.3%;花生田使用除草剂分别占登记总量的 32.8%;油菜田使用除草剂占比 66.8%[12]。鉴于人 们对食品安全问题的高度关注、农业进出口贸易需 求的增长、农药残留监控的法规日益严格,而我国又 是农业和人口大国,同时也是油料油脂生产与消费 大国[13],必须考虑到不同类型除草剂之间的联合毒 性效应以及监管尽可能地全覆盖,而像大豆中的精 噁唑禾草灵、油菜籽中的精吡氟禾草灵和扑草净在 《食品安全国家标准食品中农药最大残留限量标 准》(GB 2763-2021)^[14]没有查到相应限量值,从而 缺乏最大残留限量对其进行监管。因而,开展快速、 准确、通量高日符合残留限量要求的油料油脂中除 草剂残留量的分析方法,对保障油料食品安全、促进 行业健康发展,具有重要的现实意义。

现阶段油料油脂中除草剂的主要检测方法 包括气相色谱-串联质谱法(Gas chromatography tandem mass spectrometry,GC-MS/MS)^[15-17]和液相色 谱-串联质谱法(Liquid chromatography tandem mass spectrometry,LC-MS/MS)^[18-22]法,几乎全部都是采用 固相萃取技术和质谱检测的结合,但多数均为对于 同一类别的除草剂的检测,不同种类的除草剂必须 要分别前处理及检测,方法过于局限,增加了检测 时长,降低了检测效率和监测时效性。尤其是对于 如灭草松的代谢物 6-羟基灭草松和 8-羟基灭草松、 烯草酮的代谢物烯草酮砜和烯草酮亚砜、吡氟禾草 灵的代谢物吡氟禾草酸等尚未完全覆盖。

由于 LC-MS/MS 法通量高、检测限低、精密度 高、检测时间短等优势,本文拟采用酸化乙腈提取, 通过乙二胺基-N-丙基和无水 MgSO,分散固相萃取 净化,旨在建立快速、有效地测定油料油脂中67种 除草剂及其代谢物残留的高通量检测方法,达到尽 可能覆盖 GB 2763—2021 限量标准中尚无检验方 法的除草剂及其残留物(比如灭草松的代谢物 6-羟 基灭草松和 8-羟基灭草松、烯草酮的代谢物烯草酮 砜和烯草酮亚砜、吡氟禾草灵的代谢物吡氟禾草酸 等),覆盖率达到75%以上,一定程度上实现对油料 及其产品的全面监测,为保障油料油脂原料和产品 安全提供技术方法。本文有望解决除草剂种类繁 多目检测方法不一的问题,提高油料油脂中除草剂 的检测、监测效率,并且对后续除草剂类农药残留 的相关科研、检测标准和限量值的制定起到较好的 指导、参考、促进作用。

1 材料与方法

1.1 试剂

乙腈、甲醇、丙酮(色谱纯,赛默飞世尔公司), 无水硫酸镁、氯化钠(优级纯,国药集团化学试剂有 限公司),甲酸、乙酸铵(质谱级,赛默飞世尔公司)。

- 1.2 标准溶液
- 1.2.1 标准品

67 种除草剂残留物标准品均购于 CATO,纯度≥98%,化合物信息详见表 1。

表1 67种除草剂及其残留化合物的保留时间、监测离子对、去簇电压和碰撞能量、方法定量限及加标回收率

 Table 1
 Retention time, monitoring ion pairs, deflocculation voltage and collision energy of 67 herbicides and their residual compounds, quantitative limit of method and recovery rate of spiked standard

中文女母	オナタル	保留时间	母离子	子离子	去簇电压	碰撞能量	定量限	决定系数	加标
中义名称	央义名称	/min	(m/z)	(m/z)	/ V	$/\mathrm{eV}$	/(mg/kg)	(R^{2})	回收率/%
2,6-二氯苯甲酰胺	2,6-Dichlorobenzamide	6.16	190	173*/109	130	27/47	0.005	0.995	72.6~110.5
2,4-滴	2,4-D	11.55	219/221	160.9*/163	-70	-20/-19	0.01	0.993	75.5~95.3
2 甲 4 氯	MCPA	11.89	199/201	141*/143	-120	-23/-23	0.005	0.997	77.2~92.5
氨氯吡啶酸	picloram	5.44	242.9	224.8*/196.8	80	20/30	0.01	0.993	63.6~110.5
氨唑草酮	Amicarbazone	10.17	259.2	143.2*/242.2	40	25/7	0.01	0.998	79.2~98.3
胺苯磺隆	Ethametsulfuron	9.24	397.1	196.2*/170.2	90	21/23	0.01	0.999	81.3~105.6
苯嘧磺草胺	Saflufenacil	12.31	499	348*/328	-110	-34/-44	0.005	0.995	70.8~98.7
苯唑草酮	Topramezone	7.50	362	318*/334	-80	-33/-31	0.005	0.993	65.3~99.4
吡草醚	PotasstumTellurate	12.86	384.9	325*/327	-100	-24/-24	0.02	0.994	66.8~89.3
吡氟禾草灵	Fluazifop-butyl	15.19	384.2	282.1*/328.1	160	30/24	0.01	0.998	79.6~95.6
吡氟禾草酸	Fluazifop	12.74	327.2	255*/227	-70	-23/-37	0.005	0.992	72.8~97.7
吡唑草胺	Metazachlor	11.65	278.2	210.1*/134.1	40	13/31	0.02	0.994	75.3~94.3
丙炔氟草胺	Flumioxazin	12.22	355.2	299.1*/327.1	180	40/28	0.02	0.995	79.6~99.6
草除灵	Benazolin-ethyl	12.43	272.2	170*/198	120	36/21	0.02	0.996	79.9~110.7
敌草胺	Napropamide	13.51	272.1	171.1*/129.1	160	28/23	0.005	0.999	82.3~96.4

续表1									
中文名称	革文名称	保留时间	母离子	子离子	去簇电压	碰撞能量	定量限	决定系数	加标
- 211	入入日怀	/min	(m/z)	(m/z)	/ V	$/\mathrm{eV}$	/(mg/kg)	(R^{2})	回收率/%
敌草隆	Diuron	11.90	233.1	72*/160	180	26/35	0.02	0.993	68.9~93.9
丁草胺	Butachlor	15.45	312.1	238.1*/162.1	50	16/32	0.005	0.997	79.9~96.4
砜嘧磺隆	Rimsulfuron	11.02	432.1	182*/325	110	29/20	0.01	0.997	77.1~92.8
氟磺胺草醚	Fomesafen	12.92	437	286*/222	-70	-28/-35	0.005	0.998	85.1~99.3
甲草胺	Alachlor	13.55	270.1	238.1*/162.1	100	14/27	0.005	0.994	81.2~103.9
甲咪唑烟酸	Imazameth	8.72	276.2	163.1*/216.1	120	36/31	0.01	0.996	86.3~110.8
甲氧咪草烟	Imazamox	8.59	306.3	261.1*/246	150	29/32	0.01	0.995	76.9~96.9
精噁唑禾草灵	Fenoxaprop-p-ethyl	15.21	362.2	288*/244	180	28/31	0.005	0.998	72.3~91.8
精二甲吩草胺	dimethenamid-P	12.68	276.1	244.1*/168.1	80	21/32	0.02	0.995	82.6~105.9
喹禾灵	Quizalofop-ethyl	15.13	373.1	299*/271	190	26/35	0.005	0.995	77.2~98.1
喹禾灵酸	Quizalofop free acid	13.81	343	271*/243	-100	-23/-36	0.005	0.996	70.3~116.2
喹禾糠酯	quizalofop-P-tefuryl	14.99	429	299.1*/85.1	150	30/22	0.01	0.997	75.9~103.5
绿麦隆	Chlortoluron	11.35	213.1	72*/140	120	24/36	0.005	0.999	83.6~99.3
氯嘧磺隆	Chlorimuron-ethyl	12.91	415.1	186*/213	100	23/20	0.005	0.999	80.5~105.6
氯吡嘧磺隆	Halosulfuron methyl	13.22	435	254*/154	-70	-26/-41	0.005	0.998	63.8~82.9
氯氟吡氧乙酸	Fluroxypyr	9.76	253	194.9*/232.9	-40	-20/-10	0.01	0.996	73.4~88.9
氯氟吡氧乙酸异	<i>(</i> 1 . 1	15.05	2(7.1	255 1*/200 1	0.0	15/20	0.005	0.005	760 1127
辛酯	fluroxypyr-meptyl	15.85	367.1	255.1*/209.1	80	15/30	0.005	0.995	/6.9~112./
咪唑喹啉酸	Imazaquin acid	10.46	312.1	267.1*/252	150	28/34	0.005	0.998	75.8~98.2
咪唑烟酸	Imazapyr	7.44	262.2	217*/220	120	27/24	0.02	0.996	70.6~95.7
咪唑乙烟酸	Imazethapyr	9.81	290.1	177*/245	130	35/27	0.005	0.997	73.3~104.7
灭草松	Bentazone	10.00	239	197*/175	-120	-36/-33	0.02	0.997	77.9~96.3
6-羟基灭草松	6-Hydroxy Bentazon	9.15	255	148*/191	-55	-35/-28	0.005	0.996	62.3~94.3
8-羟基灭草松	8-Hydroxybentazone	9.47	255.1	191.1*/148.1	-70	-24/-34	0.01	0.998	72.5~111.3
扑草净	Prometrvn	12.90	242.1	158.1*/200.1	100	33/25	0.005	0.999	79.3~98.8
嗪草酮	Metribuzin	10.22	215.1	187.1*/84.1	100	23/28	0.005	0.996	78.3~98.6
氰草津	cvanazine	10.00	241.1	214.2*/104.1	160	$\frac{24}{40}$	0.01	0.999	76.2~92.7
乳氟禾草灵	Lactofen	15.34	479.1	344*/223	80	19/47	0.005	0.997	70.6~94.8
三氟羧草醚	Acifluorfen	13.15	359.9	316*/195	-60	-18/-42	0.005	0.997	65.9~105.3
三氯吡氧乙酸	Triclopyr	12.28	255.8	197.7*/219.8	-40	-16/-9	0.005	0.996	70.3~93.3
噻草酮	cvcloxvdim	14.89	326.2	280.2*/180.1	120	19/31	0.01	0.999	73.2~98.5
噻吩磺隆	Thifensulfuron-methyl	10.23	388.2	167.1*/205.1	100	22/35	0.02	0.998	79.3~97.7
噻酮磺降	thiencarbazone-methyl	9.61	391.1	359.1*/219	120	13/30	0.02	0.996	77.2~103.8
特丁津	Terbutylazine	12.74	230.1	174.1*/104.1	46	23/41	0.005	0.999	78.9~99.1
西草净	Simetrvn	10.68	214.1	124.1*/144	100	28/28	0.005	0.995	82.3~103.9
烯草酮	Clethodim	14.97	360.1	164.1*/268.1	100	26/16	0.01	0.992	74.5~107.3
烯草酮砜	ClethodiMSulfone	12.09	392.2	300*/164	105	19/38	0.01	0.995	73.6~111.5
烯草酮亚砜	ClethodiMSulfoxide	12.16	376.2	206.1*/164.1	105	22/31	0.005	0.995	82.6~115.7
烯禾啶	Sethoxydim	15.23	328.1	178.1*/282.1	90	27/16	0.005	0.997	83.1~96.3
硝磺草酮	Mesotrione	8.86	337.9	291*/46	-80	-14/-55	0.02	0.998	68.1~118.1
溴苯腈	2-Bromobenzonitrile	11.22	277.9	81*/168.9	-90	-52/-52	0.01	0.994	69.3~111.2
烟嘧磺隆	Nicosulfuron	10.32	411.1	182.1*/213.1	140	27/21	0.005	0.996	70.6~93.2
乙草胺	Acetochlor	13.52	270.1	148.1*/133.1	50	27/43	0.005	0.992	77.3~89.6
乙羧氟草醚	Fluoroglycofen-ethyl	14.97	465	344*/300	80	19/37	0.01	0.995	75.3~97.5
异丙草胺	propisochlor	14.11	284.3	224.1*/148.1	50	13/28	0.01	0.994	72.2~94.8
异丙甲草胺	Metolachlor	13.60	284.1	251.9*/175.9	70	20/34	0.005	0.996	78.8~98.3
异噁草酮	Clomazone	12.26	240.1	125*/89.1	160	30/65	0.005	0.997	75.1~106.9
异噁唑草酮	Isoxautole	11.84	360.1	251.1*/144	160	27/30	0.01	0.994	78.1~93.3
异噁唑草酮代谢						,			
物 1(DKN)	Diketonitrile	9.94	358.1	78.9*/64	-70	-20/-65	0.005	0.992	76.8~97.3
开 噁 唑 阜 酮 代 谢 物 2(BA)	Benzoic acid metabolite	8.13	267	223*/159	-40	-13/-24	0.01	0.996	78.2~93.5
秀去津	Atrazine	11.54	216.1	174*/104	150	25/38	0.005	0.997	79.2~114.3
仲丁灵	Butralin	15.99	296.1	240.1*/222.1	60	19/30	0.005	0.999	82.6~98.2
唑嘧磺草胺	Flumetsulam	7.86	326.1	129.1*/109.1	190	30/73	0.005	0.995	87.6~108.3

注:带"*"为定量离子,去簇电压和碰撞能量负数表示负离子模式

1.2.2 标准溶液配制

1.2.2.1 混合标准溶液的配制

分别准确称取标准品 10 mg,根据标准物质的 溶解性选择甲醇、丙酮或乙腈溶解并定容至 10 mL,

配制成浓度为 1 000 mg/L 标准储备溶液,再用甲醇稀释各单标,配制成浓度为 2~50 mg/L 的混合标准储备溶液。使用前稀释成浓度为 0.2~5 mg/L 的混合标准使用液。

1.2.2.2 基质混合标准系列工作液的配制

取净化后的空白基质溶液(取样量与相应的试 样处理取样量一样),过微孔滤膜,将其用于稀释中 间标准溶液到一定浓度配制成使用工作液。基质 混合标准工作溶液应现用现配。

1.3 仪器和设备

高效液相色谱-质谱/质谱仪(Triple Quad5500, 配有(Electrospray ionization, ESI)电喷雾离子源,配 岛津 LC-30A 液相色谱,美国 AB SCIEX 公司),分析 天平(XS204、ME2002E 型,梅特勒-托利多仪器(上 海)有限公司),离心机(Centrifuge 5810 型,德国艾本 德股份公司)。涡旋振荡器(Talboys 型,美国亨利特 里姆公司),多位涡旋混合器(MultiVortex 型,广州得 泰仪器科技有限公司),乙二胺-N-丙基硅烷化硅胶 (Primary secondary amine, PSA)(40~60 μm,博纳艾 杰尔科技有限公司),微孔滤膜(0.22 μm,有机系,天 津市津腾实验设备有限公司)。

1.4 样品制备

称取 5 g 试样置于 50 mL 离心管中,加入 10 mL 水,涡旋均匀,静置 15 min。加入 20 mL1% 甲酸-乙 腈溶液,加入 5 g 氯化钠,涡旋混匀 1 min,强烈振荡 提取 10 min,以 4 000 r/min 离心 5 min,将上清液置 于 50 mL 离心管中,待净化。

吸取 8 mL 上清液加入到内含 200 mg PSA 粉末 和 900 mg 无水硫酸镁的 15 mL 塑料离心管中,涡旋 混合 1 min,以 4 000 r/min 离心 5 min,上清液经 0.22 μm 有机滤膜后,供高效液相色谱-质谱/质谱 仪测定。

1.5 仪器条件

1.5.1 色谱条件

Waters BEHC₁₈色谱柱(100 mm×2.1 mm,1.7 μm); 流速:0.3 mL/min;柱温:40 °C;进样量:2 μL;0.1% 甲酸+5 mmol 乙酸铵溶液为流动相 A,甲醇为流动相 B,线性梯度洗脱,流动相梯度洗脱程序为 0~1 min, 95%A;1~15 min,95%A~5%A;15~17 min,5%A;17~ 17.5 min,5%A~95%A;17.5~20 min,95%A。

1.5.2 质谱条件

离子化模式:ESI,正离子和负离子同时扫描;质谱 扫描方式:多反应监测模式(Multi-reaction monitoring, MRM);电喷雾电压:5 500 V(正离子模式)、-4 500 V (负离子模式);离子源温度:500 ℃;气帘气压力: 45 psi;雾化气压力:50 psi;辅助气压力:55 psi。

2 结果

2.1 质谱条件的优化 用甲醇水溶液(1:1, V/V)分别将各除草剂的标 准溶液稀释成1000 ng/mL的标准溶液单标,将单 个标准物质以流动注射方式采用针泵注入质谱,分 别在 ESI⁺和 ESI⁻模式下进行全离子扫描,通过化合 物分子离子峰的绝对响应强度,确定电离方式和目 标分子母离子。根据二级碎片离子扫描质谱图及 裂解规律,选择干扰较少、相对丰度较高的两个子 离子。结果表明,不同化合物在正离子和负离子模 式下,目标化合物全扫描的分子离子加和方式均有 差别,比如乳氟禾草灵和乙羧氟草醚的[M+NH₄]*离 子峰响应显著高于[M+H]*离子峰;而2,4-滴和2甲 4 氯的「M-H] 离子峰响应较好,但是其子离子信息 较少,不能达到两个子离子的要求,考虑到其同位 素峰响应也很好,因此对于这两个化合物采用选择 其同位素离子峰为母离子,以及该母离子产生的子 离子为定性离子对,从而满足确证要求。确定好各 个化合物离子对后,以多反应监测方式优化碰撞电 压和去簇电压,相应的质谱条件见表1。

2.2 液相色谱条件的优化

本文优化了各化合物的分离度以及整体过程的 色谱程序,以降低基质效应影响,提高化合物的绝对 响应,进一步保证定量准确性。灭草松的代谢物 6-羟 基灭草松和 8-羟基灭草松为同分异构体,有着相同的 母离子和子离子,因此必须在色谱上实现基线分离 才能准确地定性定量。本文比较了不同长度的 C18色 谱柱对两种除草剂代谢物的分离效果,考察了 Waters ACQUITY UPLC BEH C₁₈ (1.7 μm, 2.1×50 mm) Waters ACQUITY UPLC BEH C₁₈(1. 7 µm, 2. 1×100 mm) 2种色谱柱对 6-羟基灭草松和 8-羟基灭草松的分离情况。 Waters ACQUITY UPLC BEH C₁₈(1. 7 µm, 2. 1×100 mm) 在 20 min 的洗脱梯度内能够对 6-羟基灭草松和 8-羟基灭 草松实现较好的分离。同时,100 mm的长色谱柱,还解 决了多目标化合物共流出影响质谱采集点数以及溶剂 效应影响色谱峰形的问题,进一步保证了定性定量 的准确性。本研究还比较了目标化合物在不同品 牌色谱柱上的分离效果和色谱峰形,3种不同品牌 C₁₈色谱柱均具有较好的分离效果和色谱峰形。 本文选用的色谱柱为 Waters ACQUITY UPLC BEH $C_{18}(1.7 \ \mu m, 2.1 \times 100 \ mm)_{\circ}$

本文还考察了流动相中盐浓度、酸浓度对化合物分离度、色谱峰形和响应的影响。结果发现,流动相中加入一定量乙酸铵后,绝大多数化合物的峰型要优于未添加乙酸铵的情况,但依然存在一部分化合物峰型较差。在流动相中添加 0.1% 甲酸时,化合物的分离度和峰形均得到有效提高和改善。 尤其是对于咪唑烟酸、氨氯吡啶酸、6-羟基灭草松、2 甲 4 氯、2,4-滴等化合物,在流动相中添加 0.1% 甲酸时,化合物的峰形得到了显著改善,即使采用 添加甲酸的流动相抑制了负离子模式下的部分化 合物的响应,但峰型的改善必然能够提高定性定量 的准确性。此外,通过对比流动相中添加2、5、 10 mmol/L乙酸铵对峰面积的影响,发现乙酸铵浓度 为5 mmol/L时,目标化合物的总体响应最高(图1)。 综合考虑,本文选择了可以正、负离子模式兼容的 流动相,实现正、负离子模式同时检测 67 种除草剂 残留物,既满足检验需要、又能够提高工作效率。 67 种除草剂化合物的总离子流 TIC 图见图 2,各化 合物峰型好,分离度高,各化合物的保留时间详 见表 1。

图1 不同乙酸铵浓度流动相条件下的部分化合物峰面积对比图

TIC of +Mrm (101 pairs) : Exp1. from Sample11 (std-hb) of Data20210816.wiff (Turbo Spray) Max.1.1e7 cps.

2.3 样品前处理条件的优化

我国油料作物主要是大豆、花生和油菜籽^[23], 大宗食用油也为大豆油、花生油和菜籽油,这6种 基质涵盖了检测方法涉及的主要产品类型,以及产 品类型所涉及的物理形态,同时对基质可能含有的 复杂成分均予以考虑。选用这6种典型基质进行 方法开发和验证实验,可以代表方法适用的产品

范围。

2.3.1 提取溶剂和方式的优化

本文选用乙腈做提取溶剂,一方面,采用分散 固相萃取(QuEChERS)方法进行样品前处理时,乙 腈的通用性强,对除草剂农药的溶解度较大;另一 方面,由于油料油脂中脂质组分占比高,且基质效 应明显,还可能污染色谱-质谱系统,采用乙腈做提 取溶剂,可有效降低试样中脂质组分的干扰和污染^[21-22]。由于油料和油脂含水量极低,并且具有一定的黏性,仅使用乙腈提取时,存在分散不够完全的现象。当加入少量的水时,可以大大提高乙腈对于样品的渗透性,基体分散得更为均匀^[24],既可以提高对目标化合物的提取效率,又可以减少油料油脂中干扰物质的溶入量。通过对比加水和不加水的提取试验,结果表明,油料和油脂试样加入 10 mL水后,使用 1% 甲酸-乙腈去提取,加入 5 g氯化钠盐 析分层,各化合物都有较好的提取效率,加水后 67 种化合物加标回收率>70% 的化合物数量(65 种)明显 多于不加水的情况(36 种),操作简单,便宜环保。

本文的检测对象较多为酸性化合物,通过在提 取溶剂中添加不同量的甲酸,考察不同酸度提取溶 剂的提取效果。通过对比采用 1% 甲酸-乙腈(体积 分数)^[25]和采用纯乙腈进行提取的化合物的回收率 结果可以看出,灭草松、6-羟基灭草松、8-羟基灭草 松、仲丁灵、三氯吡氧乙酸等化合物采用纯乙腈提 取时回收率较低。考虑到不同酸度提取溶剂对提 取效率的影响,进行了不同甲酸添加量的提取实验 (添加体积:0.1%、0.2%、0.5%、1.0%、2.0%、 5.0%),以检测到的化合物个数和回收率>70%的 化合物个数作为考量指标。如表 2 所示,随着甲酸 添加量的增加,被检测出的化合物随之增加;但是 回收率结果会随着 pH 减小变差,可能 pH 值对用负 离子检测的化合物产生了抑制,从而影响了回收 率,因此最终选择 1% 甲酸-乙腈作为提取剂。

表 2 不同 pH 提取液提取效果对比 Table 2 Comparison of extraction effects of different pH

extracts					
坦亚刘	拉测到在人物人物	回收率>70%			
旋取剂	粒侧到化合物个数	化合物个数			
乙腈	51	45			
0.1%甲酸乙腈	62	45			
0.2%甲酸乙腈	64	56			
0.5%甲酸乙腈	67	60			
1%甲酸乙腈	67	63			
2%甲酸乙腈	67	46			
5% 甲酸乙腈	67	42			

2.3.2 净化材料的选择和优化

本文在净化方法上进行改进,采用 PSA、C₁₈和 GCB 对提取液进行净化,其中 PSA 去除脂肪酸、极 性色素、糖类物质等极性基质杂质效果较好,而 C₁₈ 和 GCB 除去部分脂肪、脂溶性色素等杂质的能力较 强^[26-30]。首先对添加 PSA、C₁₈和 GCB 的组合进行优 化,采用 3 种组合的净化方式对油菜籽试样进行前 处理,单从对比油菜籽试样提取液总离子流的基 线,可以很明显地看出单独添加 PSA 的净化效果不 如复合添加 PSA、C₁₈ 以及 PSA、C₁₈、GCB 的净化效 果。通过比较单独添加及复合添加 PSA、C₁₈、GCB 等几种净化方式。对比净化效果,以弱基质效应的 化合物个数(基质效应在 0.8~1.2之间时视为基质 效应影响较低^[31])作为考量指标,结果如图 3 所示,

注:A:不净化;B:200 mg PSA+900 mg MgSO₄;C:200 mg PSA+ 200 mg C₁₈+900 mg MgSO₄;D:200 mg C₁₈+900 mg MgSO₄;E:100 mg GCB+900 mg MgSO₄;F:200 mg PSA+100 mg GCB+900 mg MgSO₄; G:200 mg PSA+200 mgC₁₈+100 mg GCB+900 mg MgSO₄ 图 3 油菜籽加标样品提取液经不同净化方式净化后总体 基质效应的对比

Figure 3 Comparison of overall matrix effect of rapeseed spiked sample extract purified by different purification methods

C₁₈ 以及 GCB 对部分化合物有明显的吸附作用,不同的净化方式对 21 种化合物的响应值无影响;C₁₈ 净化剂对 23 种化合物产生吸附,GCB 对 33 种化合物会产生吸附;而 C₁₈净化后,仅有 4 种化合物的回收率增加;GCB 净化后,仅有 2 种化合物的回收率增加。总的来说,C₁₈和 GCB 对试液的净化效果影响不大,并且会对整个过程的提取回收率造成显著影响,从而影响定量准确性,故采用 PSA 进行净化即可。对 PSA 用量进行调整,在 8 mL 提取液加入不同含量的 PSA 净化剂净化,同样以弱基质效应的化合物个数作为考量指标,结果如图 4 所示,随着PSA 的用量的增加,净化效果不断变好,当添加量超过 200 mg 后,净化效果没有太大的改变,因此,添加 200 mg PSA 即可达到净化效果。

2.4 方法定量限与基质标准曲线的线性范围

采用不含待测除草剂的大豆、花生、油菜籽、大豆 油、花生油和菜籽油空白基质液逐级稀释方法获得各 化合物定量限(Limit of quantitively,LOQ,S/N≥10)。 由于基质效应的影响,导致目标化合物发生离子增 强或者抑制作用,通常采用优化色谱分离和样品前 处理,使用同位素内标或者基质标准曲线定量法来 降低基质效应对定量准确度的影响。油料和油脂 的基质效应相对其他基质而言基质效应更为严重,

虽然绝大多数化合物经净化后具有弱基质效应,定 量时可以忽略基质效应带来的影响,但对于净化后 仍然为中等和高等强度基质效应的农药,必须考虑 基质效应对定量结果的影响,还是需要用基质标准 曲线来校准定量。表1中列出了67种除草剂的定 量限,67种除草剂在0.5~20倍定量限的线性范围 内线性关系良好,决定系数(R²)均>0.992,定量限均 能满足限量检测的要求。

2.5 方法的精密度与回收率

取空白花生、菜籽和大豆及花生油、菜籽油和 大豆油样品,分别添加三个浓度水平(LOQ、2LOQ、 10LOQ)的混合标准溶液,按样品处理方法进行处 理,每个加标水平进行6次重复实验,结果表明67种 除草剂回收率范围为62.3%~118.1%,各化合物回 收率见表1,相对标准偏差均<15%。67种除草剂的 回收率和相对标准偏差均符合GB/T27404—2008 实验室质量控制规范。

2.6 实际样品的测定

对市售花生、菜籽和大豆及花生油、菜籽油和 大豆油样品各 5 个批次按照本方法进行测定,几种 油脂中并未检测任何除草剂及代谢物残留仅有 1 个 批次的菜籽中有检出烯草酮(59.3 µg/kg)、乙草胺 (49.2 µg/kg)、草除灵(79.6 µg/kg),可能与批次数 太少有关。整个实验过程操作简便易行,效率较 高,可以用于实际样品的检测,达到定性定量的 结果。

3 结论

本文采用了酸化乙腈提取油料油脂中的除草剂,采用盐析方式将乙腈与水相分层,通过乙二胺基-N-丙基和无水 MgSO₄分散固相萃取净化,建立了一种分散固相萃取结合液相色谱-串联质谱同时测定油料油脂中 67 种除草剂残留的高通量测定的方

法,可以在短时间内实现大批量样品的处理。本方 法稳定性好、特异性强、灵敏、准确,方法所涉及的 相关水平的回收率和重现性指标符合相关要求,方 法的技术指标满足国内外对上述物质检测的有关 要求。本研究的化合物覆盖了 GB 2763—2021 限 量标准中如灭草松的代谢物 6-羟基灭草松和 8-羟 基灭草松、烯草酮的代谢物烯草酮砜和烯草酮亚 砜、吡氟禾草灵的代谢物吡氟禾草酸等尚无检验方 法的除草剂残留物及其代谢物,有助于解决除草剂 种类繁多且检测方法不一的问题,提高了油料油脂 中除草剂的检测、监测效率,实现对油料产品的全 面监测,一定程度上为保障油料油脂原料和产品安 全提供技术方法,并且为除草剂类农药残留的相关 科研、标准制定起到较好的指导、参考、促进作用。

参考文献

 [1] 黄科,张建莹,邓慧芬,等.液相色谱-串联质谱法测定蔬菜中20种酸性除草剂残留[J].分析科学学报,2019,35(6): 824-830.

HUANG K, ZHANG J Y, DENG H F, et al. Determination of 20 kinds of acid herbicide residues in vegetables by liquid chromatography-tandem mass spectrometry [J]. Journal of Analytical Science, 2019, 35(6): 824-830.

- [2] 平华,李杨,李冰茹,等.基于分散固相萃取-超高效液相色 谱串联质谱法同时测定蔬菜中多种除草剂残留的方法[J]. 中国农业科学,2017,50(21):4159-4169.
 PING H, LI Y, LI B R, et al. Simultaneous determination of multi herbicides residues in vegetables by dispersive solid phase extraction and ultra-high performance liquid chromatographytandem mass spectrometry[J]. Scientia Agricultura Sinica, 2017, 50(21):4159-4169.
- [3] 郭爱静,花中霞,辛佳,等.超高效液相色谱-串联质谱法测定油料作物中8种苯胺类除草剂[J].食品工业科技,2021,42(2):204-209.
 GUO A J, HUA Z X, XIN J, et al. Determination of 8 aniline herbicides in oil crops by ultra high performance liquid chromatography-tandem mass spectrometry [J]. Science and Technology of Food Industry, 2021, 42(2): 204-209.
- [4] 刘良月,刘晓旭,李闯,等.二氯吡啶酸·氨氯吡啶酸·烯草 酮及其代谢产物在油菜籽与土壤中的残留分析方法[J].农 药,2017,56(7):499-501,505.
 LIULY,LIUXX,LIC, et al. Residual analysis of Clopyralid· Picloram·Clethodim and its metabolites in rapeseed and soil[J]. Agrochemicals, 2017, 56(7):499-501, 505.
- [5] 徐潇颖,刘柱,朱炳祺,等.QuEChERS提取-高效液相色谱-串联质谱法测定蔬菜中29种除草剂的残留量[J].理化检 验:化学分册,2019,55(4):420-426.
 XUXY,LIUZ,ZHUBQ, et al. Determination of 29 residual herbicides in vegetables by HPLC-MS/MS with QuEChERS extraction[J]. Physical Testing and Chemical Analysis: Part B: Chemical Analysis, 2019, 55(4): 420-426.

 [6] 吴春英,白鹭,谷风,等.超高效液相色谱-串联质谱法同时 检测水中16种芳氧苯氧丙酸酯类除草剂[J].安全与环境工 程,2016,23(5):97-101.

> WU C Y, BAI L, GU F, et al. Simultaneous determination of 16 kinds of aryloxyphenoxypropionate herbicides in water using ultra performance liquid chromatography-tandem mass spectrometry [J]. Safety and Environmental Engineering, 2016, 23(5): 97-101.

[7] 刘小燕,李欣悦,高仕谦,等.氨基修饰磁性氧化石墨烯固 相萃取-高效液相色谱/质谱法测定水中苯脲类除草剂[J].分 析科学学报,2019,35(2):205-209.

> LIU X Y, LI X Y, GAO S Q, et al. Determination of phenylurea herbicides residues in water by an amido modified magnetic graphene oxide solid phase extraction-high performance liquid chromatography/mass spectrometry [J]. Journal of Analytical Science, 2019, 35(2): 205-209.

[8] 王小梅,谭培功,曹正梅,等.固相萃取/高效液相色谱法测定水中痕量硝磺草酮[J].分析测试学报,2015,34(2):216-220.

WANG X M, TAN P G, CAO Z M, et al. Determination of trace amounts of mesotrione in water by solid phase extraction and high performance liquid chromatography [J]. Journal of Instrumental Analysis, 2015, 34(2): 216-220.

- [9] 于徊萍,张盼盼,潘仲乐,等.固相萃取净化-超高效液相色 谱-串联质谱法同时测定大豆中18种酰胺类除草剂残留[J]. 环境化学,2018,37(11):2581-2584.
 YUHP, ZHANGPP, PANZL, et al. Determination of 18 amides herbicides residual in soybean by Solid phase extraction-Ultra performance liquid chromatography-tandem mass spectrum [J]. Environmental Chemistry, 2018, 37(11): 2581-2584.
- [10] NI Y X, YANG H, ZHANG H T, et al. Analysis of four sulfonylurea herbicides in cereals using modified Quick, Easy, Cheap, Effective, Rugged, and Safe sample preparation method coupled with liquidchromatography-tandem mass spectrometry [J]. Journal of Chromatography A, 2018, 1537: 27-34.
- [11] 杨益林,潘艳坤,周玉薇,等.液相色谱-串联质谱法测定甘 蔗中10种除草剂的残留量[J].理化检验:化学分册,2017, 53(5):507-511.

YANG Y L, PAN Y K, ZHOU Y W, et al. LC-MS/MS determination of residual amounts of 10 herbicides in sugarcane[J]. Physical Testing and Chemical Analysis: Part B: Chemical Analysis, 2017, 53(5): 507-511.

- [12] 朱友理,王银.我国油料作物农药登记现状及残留限量分析[J].天津农林科技,2021(4):11-15.
 ZHUYL, WANGY. Pesticide registration status and residue limit analysis of oil crops in China[J]. Science and Technology of Tianjin Agriculture and Forestry, 2021(4):11-15.
- [13] 章胜勇.中国油料作物比较优势及生产布局研究[D].武汉: 华中农业大学,2005.

ZHANG S Y. A research on Chinese oil crops comparative advantage and production distribution [D]. Wuhan: Huazhong Agricultural University, 2005.

[14] 国家卫生健康委员会,农业农村部,国家市场监督管理总局. 食品安全国家标准食品中农药最大残留限量:GB 27632021[S].北京:中国标准出版社, 2021.

National Health Commission, Ministry of Agriculture and Rural Affairs, State Administration for Market Regulation. National food safety standard-Maximum residue limits for pesticides in food: GB 2763—2021[S]. Beijing: Standards Press of China, 2021.

[15] 叶倩,朱富伟,王刚,等.牛奶中14种除草剂残留的气相色谱 串联质谱检测方法开发[J].农药学学报,2022,24(2):
 404-410.

YE Q, ZHU F W, WANG G, et al. Development of gas chromatography-tandem mass spectrometry detection method for 14 herbicides residues in milk[J]. Chinese Journal of Pesticide Science, 2022, 24(2): 404-410.

[16] 毛静春,满红平,谭文涵,等.晒青毛茶中37种除草剂农药 残留气相色谱-串联质谱测定[J].食品安全质量检测学报, 2020,11(1):241-247.

MAO J C, MAN H P, TAN W H, et al. Determination of 37 herbicide residues in sun dried green tea using gas chromatographytandem mass [J]. Journal of Food Safety & Quality, 2020, 11 (1): 241-247.

 [17] 杨晓凤,洪雪华,陈敏,等.凝胶渗透色谱净化/气相色谱-串 联质谱法同时测定大豆中23种酰胺类除草剂残留量[J].农 药,2021,60(3):207-210.
 YANG X F, HONG X H, CHEN M, et al. Simultaneous

Detection of 23 amide herbicides residues in soybean by gas chromatography tandem mass spectrometry [J]. Agrochemicals, 2021, 60(3): 207-210.

- [18] GUO T, WANG XL, WANG HF, etal. Determination of phenoxy acid herbicides in cereals using high-performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Protection, 2019, 82(7): 1160-1165.
- [19] 张建莹,靳保辉,吴卫东,等.超高效液相色谱-串联质谱法 测定菠菜、苹果及大豆中二硝基苯胺类除草剂残留量[J].质 谱学报,2018,39(1):69-75.
 ZHANG J Y, JIN B H, WU W D, et al. Simultaneous determination of dinitroaniline herbicides in spinach, apple and soybean by UPLC-MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(1): 69-75.
- [20] 汪雪芳,威欣,马飞,等.液相色谱串联质谱法检测油菜籽中27种除草剂残留[J].化学试剂,2022,44(1):116-122.
 WANG X F, QI X, MA F, et al. Simultaneous determination of 27 herbicides residues in rapeseed by LC-MS/MS[J]. Chemical Reagents, 2022,44(1):116-122.
- [21] 陈树兵,钟莺莺,贺小雨,等.高效液相色谱-电喷雾电离串联质谱法同时测定大豆中167种农药残留[J].分析测试学报,2014,33(5):499-505.
 CHEN S B, ZHONG Y Y, HE X Y, et al. simultaneous determination of 167 pesticide residues in soybean by liquid chromatography-electrospray tandem mass spectrometry [J]. Journal of Instrumental Analysis, 2014, 33(5): 499-505.
- [22] 花锦,张小燕,杜利君.QuEChERS-超高效液相色谱-串联质 谱法同时测定油料和植物油中77种农药残留量[J].食品安 质量检测学报,2015,6(5):1691-1697.
 HUA J, ZHANG X Y, DU L J. Simultaneous determination of 77

pesticides in oil plants and plant oil by high performance liquid chromatography-tandem mass spectrometry with QuEChERS [J]. Journal of Food Safety & Quality, 2015, 6(5): 1691-1697.

- [23] 孟桂元,涂洲溢,詹兴国,等.我国植物油料油脂生产、消费需求分析及发展对策[J].中国油脂,2020,45(10):1-4,27.
 MENG G Y, XU Z Y, ZHAN X G, et al. Development strategy and analysis of production and consumption demand of plant oilseeds and oils in China [J]. China Oils and Fats, 2020, 45(10): 1-4, 27.
- [24] 徐娟,王岚,黄华军,等.低温冷冻及分散固相萃取净化-超高效液相色谱-串联质谱法测定植物油中104种农药残留
 [J].色谱,2015,33(3):242-249.
 XU J, WANG L, HUANG H J, et al. Low temperature freezing followed by dispersive solid phase extraction for the determination of 104 pesticide residues in vegetable oils using ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2015, 33(3): 242-249.
- [25] 李丽春,刘书贵,尹怡,等.QuEChERS结合UPLC-MS/MS测定水产品中9种除草剂残留及基质效应[J].食品科学,2020,41(18):258-266.
 LILC,LIUSG,YINY, et al. Determination of nine herbicide residues in acuatic products using QuEChERS combined with

residues in aquatic products using QuEChERS combined with UPLC-MS/MS and evaluation of matrix effects[J]. Food Science, 2020, 41(18): 258-266.

- [26] KACZYŃSKI P. Clean-up and matrix effect in LC-MS/MS analysis of food of plant origin for high polar herbicides[J].Food Chemistry, 2017, 230: 524-531.
- $\left[\,27\,\right]$ SANTILIO A, STEFANELLI P, GIROLIMETTI S, et al.

Determination of acidic herbicides in cereals by QuEChERS extraction and LC/MS/MS[J]. Journal of Environmental Science and Health: Part B , 2011, 46(6): 535-543.

- [28] SACK C, VONDERBRINK J, SMOKER M, et al. Determination of acid herbicides using modified QuEChERS with fast switching ESI+/ESI-LC-MS/MS [J]. Journal of Agricultural and Food Chemistry, 2015, 63(43): 9657-9665.
- [29] 沈霞.分散固相萃取/超高效液相色谱-串联质谱法测定食用 菌中19种杀虫剂、杀菌剂及其代谢物[J].分析测试学报, 2020, 39(9): 1105-1111.
 SHEN X. Determination of 19 insecticides, fungicides and their metabolites in edible fungi by ultra performance liquid chromatography-tandem mass spectrometry with dispersed solid phase extraction[J]. Journal of Instrumental Analysis, 2020, 39(9): 1105-1111.
- [30] 李杨,平华,李冰茹,等.QuEChERS/超高效液相色谱-串联质 谱法测定黑木耳中33种除草剂残留[J].农药,2021,60(10): 751-755.

LI Y, PING H, LI B R, et al. Simultaneous determination of 33 herbicides residues in auricularia auricula by QuEChERS and ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Agrochemicals, 2021, 60(10): 751-755.

[31] 刘进玺,秦珊珊,冯书惠,等.高效液相色谱-串联质谱法测定食用菌中农药多残留的基质效应[J].食品科学,2016,37(18):171-177.
 LIUJX,QINSS,FENGSH, et al. matrix effects in the analysis

of pesticides residues in edible fungi by HPLC-MS/MS[J]. Food Science, 2016, 37(18): 171-177.